Title: | Open Machine Learning and Open Data Platform |
---|---|
Description: | We provide an R interface to 'OpenML.org' which is an online machine learning platform where researchers can access open data, download and upload data sets, share their machine learning tasks and experiments and organize them online to work and collaborate with other researchers. The R interface allows to query for data sets with specific properties, and allows the downloading and uploading of data sets, tasks, flows and runs. See <https://www.openml.org/guide/api> for more information. |
Authors: | Giuseppe Casalicchio <[email protected]>, Bernd Bischl <[email protected]>, Dominik Kirchhoff <[email protected]>, Michel Lang <[email protected]>, Benjamin Hofner <[email protected]>, Jakob Bossek <[email protected]>, Pascal Kerschke <[email protected]>, Joaquin Vanschoren <[email protected]> |
Maintainer: | Giuseppe Casalicchio <[email protected]> |
License: | BSD_3_clause + file LICENSE |
Version: | 1.12 |
Built: | 2025-03-12 05:32:43 UTC |
Source: | https://github.com/openml/openml-r |
Allows you to do multiple chunked requests with the listOML* functions.
The request will be repeated until total.limit
is reached or until there are no more results available on the server.
chunkOMLlist(listfun, ..., total.limit = 1e+05, chunk.limit = 1000)
chunkOMLlist(listfun, ..., total.limit = 1e+05, chunk.limit = 1000)
listfun |
[ |
... |
[ |
total.limit |
[ |
chunk.limit |
[ |
Other listing functions:
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTaskTypes()
,
listOMLTasks()
Delete all cached objects and recreate cache directories.
clearOMLCache()
clearOMLCache()
# \dontrun{ # clearOMLCache() # }
# \dontrun{ # clearOMLCache() # }
After loading the package, it tries to find a configuration in your home
directory. The R command path.expand("~/.openml/config")
gives you the
full path to the configuration file on your operating system.
For further information please read the vignette.
By default the cache directory is located in a temporary directory and the cache will be deleted in between R sessions. We thus recommend to set the cache directory by hand.
Other config:
getOMLConfig()
,
loadOMLConfig()
,
saveOMLConfig()
,
setOMLConfig()
Creates an OMLFlow
for an mlr Learner
]
Required if you want to upload an mlr learner to the OpenML server.
convertMlrLearnerToOMLFlow( lrn, name = paste0("mlr.", lrn$id), description = NULL, ... )
convertMlrLearnerToOMLFlow( lrn, name = paste0("mlr.", lrn$id), description = NULL, ... )
lrn |
[ |
name |
[ |
description |
[ |
... |
[ |
[OMLFlow
].
Converts a Task
to an OMLDataSet
.
convertMlrTaskToOMLDataSet(task, description = NULL)
convertMlrTaskToOMLDataSet(task, description = NULL)
task |
[ |
description |
[ |
[OMLDataSet
].
Other data set-related functions:
OMLDataSetDescription
,
OMLDataSet
,
convertOMLDataSetToMlr()
,
deleteOMLObject()
,
getOMLDataSet()
,
listOMLDataSets()
,
tagOMLObject()
,
uploadOMLDataSet()
Converts an OMLDataSet
to a Task
.
convertOMLDataSetToMlr( obj, mlr.task.id = "<oml.data.name>", task.type = NULL, target = obj$desc$default.target.attribute, ignore.flagged.attributes = TRUE, drop.levels = TRUE, fix.colnames = TRUE, verbosity = NULL )
convertOMLDataSetToMlr( obj, mlr.task.id = "<oml.data.name>", task.type = NULL, target = obj$desc$default.target.attribute, ignore.flagged.attributes = TRUE, drop.levels = TRUE, fix.colnames = TRUE, verbosity = NULL )
obj |
[ |
mlr.task.id |
[ |
task.type |
[ |
target |
[ |
ignore.flagged.attributes |
[ |
drop.levels |
[ |
fix.colnames |
[ |
verbosity |
[ |
[Task
].
Other data set-related functions:
OMLDataSetDescription
,
OMLDataSet
,
convertMlrTaskToOMLDataSet()
,
deleteOMLObject()
,
getOMLDataSet()
,
listOMLDataSets()
,
tagOMLObject()
,
uploadOMLDataSet()
# \dontrun{ # library("mlr") # autosOML = getOMLDataSet(data.id = 9) # autosMlr = convertOMLDataSetToMlr(autosOML) # }
# \dontrun{ # library("mlr") # autosOML = getOMLDataSet(data.id = 9) # autosMlr = convertOMLDataSetToMlr(autosOML) # }
Converts an OMLFlow
that was originally created with the OpenML
R-package to a Learner
.
convertOMLFlowToMlr(flow)
convertOMLFlowToMlr(flow)
flow |
[ |
[Learner
].
Other flow-related functions:
deleteOMLObject()
,
getOMLFlow()
,
listOMLFlows()
,
makeOMLFlowParameter()
,
makeOMLFlow()
,
tagOMLObject()
OMLMlrRun
s to a BenchmarkResult
.Converts one or more OMLMlrRun
s to a BenchmarkResult
.
convertOMLMlrRunToBMR(...)
convertOMLMlrRunToBMR(...)
... |
Other run-related functions:
convertOMLRunToBMR()
,
deleteOMLObject()
,
getOMLRun()
,
listOMLRuns()
,
makeOMLRunParameter()
,
makeOMLRun()
,
tagOMLObject()
,
uploadOMLRun()
Converts an OMLRun
to a BenchmarkResult
.
convertOMLRunToBMR( run, measures = run$task.evaluation.measure, recompute = FALSE )
convertOMLRunToBMR( run, measures = run$task.evaluation.measure, recompute = FALSE )
run |
[ |
measures |
[ |
recompute |
[ |
Other run-related functions:
convertOMLMlrRunToBMR()
,
deleteOMLObject()
,
getOMLRun()
,
listOMLRuns()
,
makeOMLRunParameter()
,
makeOMLRun()
,
tagOMLObject()
,
uploadOMLRun()
Converts an OMLTask
to a list of Task
,
ResampleInstance
and Measure
.
convertOMLTaskToMlr( obj, measures = NULL, mlr.task.id = "<oml.data.name>", ignore.flagged.attributes = TRUE, drop.levels = TRUE, verbosity = NULL )
convertOMLTaskToMlr( obj, measures = NULL, mlr.task.id = "<oml.data.name>", ignore.flagged.attributes = TRUE, drop.levels = TRUE, verbosity = NULL )
obj |
[ |
measures |
[ |
mlr.task.id |
[ |
ignore.flagged.attributes |
[ |
drop.levels |
[ |
verbosity |
[ |
[list] A list with the following objects:
Other task-related functions:
deleteOMLObject()
,
getOMLTask()
,
listOMLTaskTypes()
,
listOMLTasks()
,
makeOMLTask()
,
tagOMLObject()
# \dontrun{ # library("mlr") # vinnieOML = getOMLTask(task.id = 4845) # vinnieMlr = convertOMLTaskToMlr(vinnieOML) # }
# \dontrun{ # library("mlr") # vinnieOML = getOMLTask(task.id = 4845) # vinnieMlr = convertOMLTaskToMlr(vinnieOML) # }
This will delete one of your uploaded datasets, tasks, flows or runs. Note that you can only delete the objects you uploaded.
deleteOMLObject( id, object = c("data", "task", "flow", "run", "study"), verbosity = NULL )
deleteOMLObject( id, object = c("data", "task", "flow", "run", "study"), verbosity = NULL )
id |
[ |
object |
[ |
verbosity |
[ |
Other data set-related functions:
OMLDataSetDescription
,
OMLDataSet
,
convertMlrTaskToOMLDataSet()
,
convertOMLDataSetToMlr()
,
getOMLDataSet()
,
listOMLDataSets()
,
tagOMLObject()
,
uploadOMLDataSet()
Other task-related functions:
convertOMLTaskToMlr()
,
getOMLTask()
,
listOMLTaskTypes()
,
listOMLTasks()
,
makeOMLTask()
,
tagOMLObject()
Other flow-related functions:
convertOMLFlowToMlr()
,
getOMLFlow()
,
listOMLFlows()
,
makeOMLFlowParameter()
,
makeOMLFlow()
,
tagOMLObject()
Other run-related functions:
convertOMLMlrRunToBMR()
,
convertOMLRunToBMR()
,
getOMLRun()
,
listOMLRuns()
,
makeOMLRunParameter()
,
makeOMLRun()
,
tagOMLObject()
,
uploadOMLRun()
Extracts either all data.id
s, task.id
s, flow.id
s or run.id
s from an OMLStudy
object.
extractOMLStudyIds(object, type, chunk.size = 400)
extractOMLStudyIds(object, type, chunk.size = 400)
object |
[ |
type |
[ |
chunk.size |
[ |
[numeric
].
The caching mechanism is fine, but sometimes you might want to work on a dataset, which is already cached and has been deactivated in the meanwhile. This function can be used to determine the status of all cached datasets.
getCachedOMLDataSetStatus(show.warnings = TRUE, ...)
getCachedOMLDataSetStatus(show.warnings = TRUE, ...)
show.warnings |
[ |
... |
Arguments passed to |
[data.frame
]
# \dontrun{ # getCachedOMLDataSetStatus() # }
# \dontrun{ # getCachedOMLDataSetStatus() # }
Returns a list of OpenML configuration settings.
getOMLConfig()
getOMLConfig()
list
of current configuration variables with class “OMLConfig”.
Other config:
configuration
,
loadOMLConfig()
,
saveOMLConfig()
,
setOMLConfig()
getOMLConfig()
getOMLConfig()
Given a data set ID, the corresponding OMLDataSet
will be downloaded (if not in cache) and returned.
Note that data splits and other task-related information are not included in
an OMLDataSet
. Tasks can be downloaded with getOMLTask
.
getOMLDataSet( data.id = NULL, data.name = NULL, data.version = NULL, cache.only = FALSE, verbosity = NULL )
getOMLDataSet( data.id = NULL, data.name = NULL, data.version = NULL, cache.only = FALSE, verbosity = NULL )
data.id |
[ |
data.name |
[ |
data.version |
[ |
cache.only |
[ |
verbosity |
[ |
[OMLDataSet
].
One of data.id
or data.name
must be passed.
Other downloading functions:
getOMLDataSetQualities()
,
getOMLFlow()
,
getOMLRun()
,
getOMLStudy()
,
getOMLTask()
Other data set-related functions:
OMLDataSetDescription
,
OMLDataSet
,
convertMlrTaskToOMLDataSet()
,
convertOMLDataSetToMlr()
,
deleteOMLObject()
,
listOMLDataSets()
,
tagOMLObject()
,
uploadOMLDataSet()
# \dontrun{ # dat = getOMLDataSet(data.id = 9) # # # this object contains the data ($data) # # and meta information # str(dat, 1) # summary(dat$data) # }
# \dontrun{ # dat = getOMLDataSet(data.id = 9) # # # this object contains the data ($data) # # and meta information # str(dat, 1) # summary(dat$data) # }
The returned data.frame
contains data set quality
“name”s and values “value”.
getOMLDataSetQualities(data.id, verbosity = NULL, name = NULL)
getOMLDataSetQualities(data.id, verbosity = NULL, name = NULL)
data.id |
[ |
verbosity |
[ |
name |
[ |
[data.frame
].
Other downloading functions:
getOMLDataSet()
,
getOMLFlow()
,
getOMLRun()
,
getOMLStudy()
,
getOMLTask()
# \dontrun{ # a = getOMLDataSetQualities(data.id = 9) # a[a$name == "number.of.missing.values", ] # getOMLDataSetQualities(data.id = 9, name = "number.of.missing.values") # }
# \dontrun{ # a = getOMLDataSetQualities(data.id = 9) # a[a$name == "number.of.missing.values", ] # getOMLDataSetQualities(data.id = 9, name = "number.of.missing.values") # }
Given an flow id, the corresponding OMLFlow
is
downloaded if not already available in cache.
getOMLFlow(flow.id, cache.only = FALSE, verbosity = NULL)
getOMLFlow(flow.id, cache.only = FALSE, verbosity = NULL)
flow.id |
[ |
cache.only |
[ |
verbosity |
[ |
[OMLFlow
].
Other downloading functions:
getOMLDataSetQualities()
,
getOMLDataSet()
,
getOMLRun()
,
getOMLStudy()
,
getOMLTask()
Other flow-related functions:
convertOMLFlowToMlr()
,
deleteOMLObject()
,
listOMLFlows()
,
makeOMLFlowParameter()
,
makeOMLFlow()
,
tagOMLObject()
# \dontrun{ # r_ctree = getOMLFlow(flow.id = 2569) # weka_bagging = getOMLFlow(flow.id = 2286) # }
# \dontrun{ # r_ctree = getOMLFlow(flow.id = 2569) # weka_bagging = getOMLFlow(flow.id = 2286) # }
Given an run id, the corresponding OMLRun
including all server
and user computed metrics is downloaded if not already available in cache.
getOMLRun(run.id, cache.only = FALSE, only.xml = FALSE, verbosity = NULL)
getOMLRun(run.id, cache.only = FALSE, only.xml = FALSE, verbosity = NULL)
run.id |
[ |
cache.only |
[ |
only.xml |
[ |
verbosity |
[ |
[OMLRun
].
Other downloading functions:
getOMLDataSetQualities()
,
getOMLDataSet()
,
getOMLFlow()
,
getOMLStudy()
,
getOMLTask()
Other run-related functions:
convertOMLMlrRunToBMR()
,
convertOMLRunToBMR()
,
deleteOMLObject()
,
listOMLRuns()
,
makeOMLRunParameter()
,
makeOMLRun()
,
tagOMLObject()
,
uploadOMLRun()
# \dontrun{ # runs_ctree = listOMLRuns(flow.id = 2569) # run1 = getOMLRun(run.id = runs_ctree$run.id[1]) # str(run1, 1) # }
# \dontrun{ # runs_ctree = listOMLRuns(flow.id = 2569) # run1 = getOMLRun(run.id = runs_ctree$run.id[1]) # str(run1, 1) # }
Extracts the seed information as OMLRunParList
from a OMLRun
.
getOMLRunParList(run)
getOMLRunParList(run)
run |
[ |
[OMLRunParList
].
Extracts the seed information as OMLSeedParList
from a OMLRun
.
getOMLSeedParList(run)
getOMLSeedParList(run)
run |
[ |
[OMLSeedParList
].
A OpenML study is a collection of OpenML objects with a specific tag defined by the user (i.e. "study_X"). If you create a study through the website https://www.openml.org/new/study, you can also specify an alias which can be used to access the study.
getOMLStudy(study = NULL, verbosity = NULL)
getOMLStudy(study = NULL, verbosity = NULL)
study |
[ |
verbosity |
[ |
[OMLStudy
].
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
Other downloading functions:
getOMLDataSetQualities()
,
getOMLDataSet()
,
getOMLFlow()
,
getOMLRun()
,
getOMLTask()
Given a task ID, the corresponding OMLTask
will be downloaded
(if not in cache) and returned.
getOMLTask(task.id, cache.only = FALSE, verbosity = NULL)
getOMLTask(task.id, cache.only = FALSE, verbosity = NULL)
task.id |
[ |
cache.only |
[ |
verbosity |
[ |
[OMLTask
].
Other downloading functions:
getOMLDataSetQualities()
,
getOMLDataSet()
,
getOMLFlow()
,
getOMLRun()
,
getOMLStudy()
Other task-related functions:
convertOMLTaskToMlr()
,
deleteOMLObject()
,
listOMLTaskTypes()
,
listOMLTasks()
,
makeOMLTask()
,
tagOMLObject()
# # Download task and access relevant information to start running experiments # \dontrun{ # task = getOMLTask(1) # task # task$task.type # task$input$data.set # head(task$input$data.set$data) # }
# # Download task and access relevant information to start running experiments # \dontrun{ # task = getOMLTask(1) # task # task$task.type # task$input$data.set # head(task$input$data.set$data) # }
The returned data.frame
contains quality name “name”.
listOMLDataSetQualities(verbosity = NULL)
listOMLDataSetQualities(verbosity = NULL)
verbosity |
[ |
[data.frame
].
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
Other listing functions:
chunkOMLlist()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTaskTypes()
,
listOMLTasks()
# \dontrun{ # listOMLDataSetQualities() # }
# \dontrun{ # listOMLDataSetQualities() # }
The returned data.frame
contains the data set id “data.id”,
the “status” (“active”, “deactivated”, “in_preparation”)
and describing data qualities.
Note that by default only active data sets (due to “status = "active"”) will be returned. Furthermore, the argument “limit = 5000” will limit the number of results to 5000.
listOMLDataSets( number.of.instances = NULL, number.of.features = NULL, number.of.classes = NULL, number.of.missing.values = NULL, tag = NULL, data.name = NULL, limit = 5000, offset = NULL, status = "active", verbosity = NULL )
listOMLDataSets( number.of.instances = NULL, number.of.features = NULL, number.of.classes = NULL, number.of.missing.values = NULL, tag = NULL, data.name = NULL, limit = 5000, offset = NULL, status = "active", verbosity = NULL )
number.of.instances |
[ |
number.of.features |
[ |
number.of.classes |
[ |
number.of.missing.values |
[ |
tag |
[ |
data.name |
[ |
limit |
[ |
offset |
[ |
status |
[ |
verbosity |
[ |
[data.frame
].
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTaskTypes()
,
listOMLTasks()
Other data set-related functions:
OMLDataSetDescription
,
OMLDataSet
,
convertMlrTaskToOMLDataSet()
,
convertOMLDataSetToMlr()
,
deleteOMLObject()
,
getOMLDataSet()
,
tagOMLObject()
,
uploadOMLDataSet()
# \dontrun{ # datasets = listOMLDataSets() # tail(datasets) # }
# \dontrun{ # datasets = listOMLDataSets() # tail(datasets) # }
The returned data.frame
contains the est.id
and the corresponding
name of the estimation procedure.
listOMLEstimationProcedures(verbosity = NULL)
listOMLEstimationProcedures(verbosity = NULL)
verbosity |
[ |
[data.frame
].
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTaskTypes()
,
listOMLTasks()
# \dontrun{ # listOMLEstimationProcedures() # }
# \dontrun{ # listOMLEstimationProcedures() # }
The names of all evaluation measures which are used in at least one run are returned
in a data.frame
.
listOMLEvaluationMeasures(verbosity = NULL)
listOMLEvaluationMeasures(verbosity = NULL)
verbosity |
[ |
[data.frame
].
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTaskTypes()
,
listOMLTasks()
# \dontrun{ # listOMLEvaluationMeasures() # }
# \dontrun{ # listOMLEvaluationMeasures() # }
The returned data.frame
contains the flow id “fid”,
the flow name (“full.name” and “name”), version information
(“version” and “external.version”) and the uploader (“uploader”)
of all registered OpenML flows.
listOMLFlows(tag = NULL, limit = NULL, offset = NULL, verbosity = NULL)
listOMLFlows(tag = NULL, limit = NULL, offset = NULL, verbosity = NULL)
tag |
[ |
limit |
[ |
offset |
[ |
verbosity |
[ |
[data.frame
].
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTaskTypes()
,
listOMLTasks()
Other flow-related functions:
convertOMLFlowToMlr()
,
deleteOMLObject()
,
getOMLFlow()
,
makeOMLFlowParameter()
,
makeOMLFlow()
,
tagOMLObject()
# \dontrun{ # flows = listOMLFlows() # tail(flows) # }
# \dontrun{ # flows = listOMLFlows() # tail(flows) # }
Retrieves all run results for task(s) (task.id
), flow(s) (flow.id
)
run(s) (run.id
) or uploaders(s) (uploader.id
and returns a data.frame
.
Each row contains, among others, the run id “rid”. Alternatively the
function can be passed a single tag
to list only runs with the corresponding
tag associated.
listOMLRunEvaluations( task.id = NULL, flow.id = NULL, run.id = NULL, uploader.id = NULL, tag = NULL, limit = NULL, offset = NULL, verbosity = NULL, evaluation.measure = NULL, show.array.measures = FALSE, extend.flow.name = TRUE )
listOMLRunEvaluations( task.id = NULL, flow.id = NULL, run.id = NULL, uploader.id = NULL, tag = NULL, limit = NULL, offset = NULL, verbosity = NULL, evaluation.measure = NULL, show.array.measures = FALSE, extend.flow.name = TRUE )
task.id |
[ |
flow.id |
[ |
run.id |
[ |
uploader.id |
[ |
tag |
[ |
limit |
[ |
offset |
[ |
verbosity |
[ |
evaluation.measure |
[ |
show.array.measures |
[ |
extend.flow.name |
[ |
[data.frame
].
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
# \dontrun{ # # get run results of task 6 (as many rows as runs for this task) # rev_tid6 = listOMLRunEvaluations(task.id = 6L) # str(rev_tid6) # # # get run results of run 8 (one row) # rev_rid8 = listOMLRunEvaluations(run.id = 8) # str(rev_rid8) # }
# \dontrun{ # # get run results of task 6 (as many rows as runs for this task) # rev_tid6 = listOMLRunEvaluations(task.id = 6L) # str(rev_tid6) # # # get run results of run 8 (one row) # rev_rid8 = listOMLRunEvaluations(run.id = 8) # str(rev_rid8) # }
This function returns information on all OpenML runs that match certain
task.id
(s), run.id
(s), flow ID flow.id
and/or
uploader.id
(s). Alternatively the function can be passed a single
tag
to list only runs with the corresponding tag associated.
Note that by default only the first 5000 runs will be returned (due to the argument “limit = 5000”).
listOMLRuns( task.id = NULL, flow.id = NULL, run.id = NULL, uploader.id = NULL, tag = NULL, limit = 5000, offset = NULL, verbosity = NULL )
listOMLRuns( task.id = NULL, flow.id = NULL, run.id = NULL, uploader.id = NULL, tag = NULL, limit = 5000, offset = NULL, verbosity = NULL )
task.id |
[ |
flow.id |
[ |
run.id |
[ |
uploader.id |
[ |
tag |
[ |
limit |
[ |
offset |
[ |
verbosity |
[ |
[data.frame
].
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTaskTypes()
,
listOMLTasks()
Other run-related functions:
convertOMLMlrRunToBMR()
,
convertOMLRunToBMR()
,
deleteOMLObject()
,
getOMLRun()
,
makeOMLRunParameter()
,
makeOMLRun()
,
tagOMLObject()
,
uploadOMLRun()
# \dontrun{ # runs_ctree = listOMLRuns(flow.id = 2569) # head(runs_ctree) # }
# \dontrun{ # runs_ctree = listOMLRuns(flow.id = 2569) # head(runs_ctree) # }
Each run has a setup.id
, i.e. an ID for the hyperparameter settings of the flow that produced the run.
This function allows the listing of hyperparameter settings.
listOMLSetup( setup.id = NULL, flow.id = NULL, limit = 1000, offset = NULL, verbosity = NULL )
listOMLSetup( setup.id = NULL, flow.id = NULL, limit = 1000, offset = NULL, verbosity = NULL )
setup.id |
[ |
flow.id |
[ |
limit |
[ |
offset |
[ |
verbosity |
[ |
[data.frame
].
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLStudies()
,
listOMLTaskTypes()
,
listOMLTasks()
# \dontrun{ # listOMLSetup(limit = 1) # }
# \dontrun{ # listOMLSetup(limit = 1) # }
Retrives a list of available studies.
listOMLStudies( main.entity.type = NULL, status = "all", uploader.id = NULL, limit = NULL, offset = NULL, verbosity = NULL )
listOMLStudies( main.entity.type = NULL, status = "all", uploader.id = NULL, limit = NULL, offset = NULL, verbosity = NULL )
main.entity.type |
[ |
status |
[ |
uploader.id |
[ |
limit |
[ |
offset |
[ |
verbosity |
[ |
[data.frame
].
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLTaskTypes()
,
listOMLTasks()
The returned data.frame
contains the task_id
, the data set id data.id
,
the status
and some describing data qualities.
Note that by default only the first 5000 data sets will be returned (due to the argument “limit = 5000”).
listOMLTasks( task.type = NULL, estimation.procedure = NULL, evaluation.measures = NULL, number.of.instances = NULL, number.of.features = NULL, number.of.classes = NULL, number.of.missing.values = NULL, tag = NULL, data.name = NULL, data.tag = NULL, limit = 5000, offset = NULL, status = "active", verbosity = NULL )
listOMLTasks( task.type = NULL, estimation.procedure = NULL, evaluation.measures = NULL, number.of.instances = NULL, number.of.features = NULL, number.of.classes = NULL, number.of.missing.values = NULL, tag = NULL, data.name = NULL, data.tag = NULL, limit = 5000, offset = NULL, status = "active", verbosity = NULL )
task.type |
[ |
estimation.procedure |
[ |
evaluation.measures |
[ |
number.of.instances |
[ |
number.of.features |
[ |
number.of.classes |
[ |
number.of.missing.values |
[ |
tag |
[ |
data.name |
[ |
data.tag |
[ |
limit |
[ |
offset |
[ |
status |
[ |
verbosity |
[ |
[data.frame
].
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTaskTypes()
Other task-related functions:
convertOMLTaskToMlr()
,
deleteOMLObject()
,
getOMLTask()
,
listOMLTaskTypes()
,
makeOMLTask()
,
tagOMLObject()
# \dontrun{ # tasks = listOMLTasks() # head(tasks) # }
# \dontrun{ # tasks = listOMLTasks() # head(tasks) # }
The returned data.frame
contains the type id
and the character
name of the OpenML task type.
listOMLTaskTypes(verbosity = NULL)
listOMLTaskTypes(verbosity = NULL)
verbosity |
[ |
[data.frame
].
This function is memoised. I.e., if you call this function twice in a running R session,
the first call will query the server and store the results in memory while the second and all subsequent calls will return
the cached results from the first call.
You can reset the cache by calling forget
on the function manually.
Other listing functions:
chunkOMLlist()
,
listOMLDataSetQualities()
,
listOMLDataSets()
,
listOMLEstimationProcedures()
,
listOMLEvaluationMeasures()
,
listOMLFlows()
,
listOMLRuns()
,
listOMLSetup()
,
listOMLStudies()
,
listOMLTasks()
Other task-related functions:
convertOMLTaskToMlr()
,
deleteOMLObject()
,
getOMLTask()
,
listOMLTasks()
,
makeOMLTask()
,
tagOMLObject()
# \dontrun{ # listOMLTaskTypes() # }
# \dontrun{ # listOMLTaskTypes() # }
Loads the OpenML config file from the disk and overwrites the current OpenML config. If there is no API key in the configuration file, the key is retrieved from the environment variable “OPENMLAPIKEY” (if defined).
loadOMLConfig(path = "~/.openml/config", assign = TRUE)
loadOMLConfig(path = "~/.openml/config", assign = TRUE)
path |
[ |
assign |
[ |
list
of current configuration variables with class “OMLConfig”.
Other config:
configuration
,
getOMLConfig()
,
saveOMLConfig()
,
setOMLConfig()
# # if assign = FALSE nothing is changed # # usually one would want assign = TRUE # \dontrun{ # loadOMLConfig(assign = FALSE) # }
# # if assign = FALSE nothing is changed # # usually one would want assign = TRUE # \dontrun{ # loadOMLConfig(assign = FALSE) # }
More details about the elements of a OMLFlow
can be found in the
documentation.
makeOMLFlow( flow.id = NA_integer_, uploader = NA_integer_, name, version = NA_character_, external.version = NA_character_, description, creator = NA_character_, contributor = NA_character_, upload.date = NA_character_, licence = NA_character_, language = "English", full.description = NA_character_, installation.notes = NA_character_, dependencies = NA_character_, bibliographical.reference = NULL, implements = NA_character_, parameters = NULL, components = NULL, qualities = NULL, tags = NA_character_, source.url = NA_character_, binary.url = NA_character_, source.format = NA_character_, binary.format = NA_character_, source.md5 = NA_character_, binary.md5 = NA_character_, source.path = NA_character_, binary.path = NA_character_, object = NULL )
makeOMLFlow( flow.id = NA_integer_, uploader = NA_integer_, name, version = NA_character_, external.version = NA_character_, description, creator = NA_character_, contributor = NA_character_, upload.date = NA_character_, licence = NA_character_, language = "English", full.description = NA_character_, installation.notes = NA_character_, dependencies = NA_character_, bibliographical.reference = NULL, implements = NA_character_, parameters = NULL, components = NULL, qualities = NULL, tags = NA_character_, source.url = NA_character_, binary.url = NA_character_, source.format = NA_character_, binary.format = NA_character_, source.md5 = NA_character_, binary.md5 = NA_character_, source.path = NA_character_, binary.path = NA_character_, object = NULL )
flow.id |
[ |
uploader |
[ |
name |
[ |
version |
[ |
external.version |
[ |
description |
[ |
creator |
[ |
contributor |
[ |
upload.date |
[ |
licence |
[ |
language |
[ |
full.description |
[ |
installation.notes |
[ |
dependencies |
[ |
bibliographical.reference |
[ |
implements |
[ |
parameters |
[ |
components |
[ |
qualities |
[ |
tags |
[ |
source.url |
[ |
binary.url |
[ |
source.format |
[ |
binary.format |
[ |
source.md5 |
[ |
binary.md5 |
[ |
source.path |
[ |
binary.path |
[ |
object |
[ |
Other flow-related functions:
convertOMLFlowToMlr()
,
deleteOMLObject()
,
getOMLFlow()
,
listOMLFlows()
,
makeOMLFlowParameter()
,
tagOMLObject()
More details about the elements of a OMLRun
can be found in the
documentation.
makeOMLRun( run.id = NA_integer_, uploader = NA_integer_, uploader.name = NA_character_, task.id, task.type = NA_character_, task.evaluation.measure = NA_character_, flow.id = NA_integer_, flow.name = NA_character_, setup.id = NA_integer_, setup.string = NA_character_, error.message = NA_character_, parameter.setting = list(), tags = NA_character_, predictions = NULL, input.data = makeOMLIOData(), output.data = makeOMLIOData() )
makeOMLRun( run.id = NA_integer_, uploader = NA_integer_, uploader.name = NA_character_, task.id, task.type = NA_character_, task.evaluation.measure = NA_character_, flow.id = NA_integer_, flow.name = NA_character_, setup.id = NA_integer_, setup.string = NA_character_, error.message = NA_character_, parameter.setting = list(), tags = NA_character_, predictions = NULL, input.data = makeOMLIOData(), output.data = makeOMLIOData() )
run.id |
[ |
uploader |
[ |
uploader.name |
[ |
task.id |
[ |
task.type |
[ |
task.evaluation.measure |
[ |
flow.id |
[ |
flow.name |
[ |
setup.id |
[ |
setup.string |
[ |
error.message |
[ |
parameter.setting |
[ |
tags |
[ |
predictions |
[ |
input.data |
[ |
output.data |
[ |
Other run-related functions:
convertOMLMlrRunToBMR()
,
convertOMLRunToBMR()
,
deleteOMLObject()
,
getOMLRun()
,
listOMLRuns()
,
makeOMLRunParameter()
,
tagOMLObject()
,
uploadOMLRun()
Generate a list of OpenML run parameter settings for a given mlr learner.
makeOMLRunParList(mlr.lrn, component = NA_character_)
makeOMLRunParList(mlr.lrn, component = NA_character_)
mlr.lrn |
[ |
component |
[ |
A OMLRunParList
which is a list of OMLRunParameters
.
Generate a list of OpenML seed parameter settings for a given seed.
makeOMLSeedParList(seed, prefix = "openml")
makeOMLSeedParList(seed, prefix = "openml")
seed |
[ |
prefix |
[ |
A OMLSeedParList
which is a list of OMLRunParameters
that provide only information about the seed.
If you create a study through the website https://www.openml.org/new/study, you can also specify an alias which can be used to access the study. To see a full list of all elements, please see the documentation.
makeOMLStudy( alias, name, description, data.id = NULL, task.id = NULL, flow.id = NULL, run.id = NULL )
makeOMLStudy( alias, name, description, data.id = NULL, task.id = NULL, flow.id = NULL, run.id = NULL )
alias |
[ |
name |
[ |
description |
[ |
data.id |
[ |
task.id |
[ |
flow.id |
[ |
run.id |
[ |
[OMLStudy
].
Other uploading functions:
uploadOMLDataSet()
,
uploadOMLFlow()
,
uploadOMLRun()
,
uploadOMLStudy()
More details about the elements of a OMLTask
can be found in the
documentation.
makeOMLTask( task.id, task.type, input, parameters = list(), output, tags = NA_character_ )
makeOMLTask( task.id, task.type, input, parameters = list(), output, tags = NA_character_ )
task.id |
[ |
task.type |
[ |
input |
[ |
parameters |
[ |
output |
[ |
tags |
[ |
Other task-related functions:
convertOMLTaskToMlr()
,
deleteOMLObject()
,
getOMLTask()
,
listOMLTaskTypes()
,
listOMLTasks()
,
tagOMLObject()
An OMLDataSet
consists of an OMLDataSetDescription
, a
data.frame
containing the data set, the old and new column names and,
finally, the target features.
The OMLDataSetDescription
provides information on the data set,
like the ID, name, version, etc. To see a full list of all elements, please see the
documentation.
The slot colnames.old
contains the original names, i.e., the column names that were
uploaded to the server, while colnames.new
contains the names that you will see when
working with the data in R.
Most of the time, old and new column names are identical. Only if the original names are
not valid, the new ones will differ.
The slot target.features
contains the column name(s) from the data.frame
of the OMLDataSet
that refer to the target feature(s).
makeOMLDataSet( desc, data, colnames.old = colnames(data), colnames.new = colnames(data), target.features = NULL )
makeOMLDataSet( desc, data, colnames.old = colnames(data), colnames.new = colnames(data), target.features = NULL )
desc |
[ |
data |
[ |
colnames.old |
[ |
colnames.new |
[ |
target.features |
[ |
[OMLDataSet
]
Other data set-related functions:
OMLDataSetDescription
,
convertMlrTaskToOMLDataSet()
,
convertOMLDataSetToMlr()
,
deleteOMLObject()
,
getOMLDataSet()
,
listOMLDataSets()
,
tagOMLObject()
,
uploadOMLDataSet()
data("airquality") dsc = "Daily air quality measurements in New York, May to September 1973. This data is taken from R." cit = "Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data Analysis. Belmont, CA: Wadsworth." desc_airquality = makeOMLDataSetDescription(name = "airquality", description = dsc, creator = "New York State Department of Conservation (ozone data) and the National Weather Service (meteorological data)", collection.date = "May 1, 1973 to September 30, 1973", language = "English", licence = "GPL-2", url = "https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html", default.target.attribute = "Ozone", citation = cit, tags = "R") airquality_oml = makeOMLDataSet(desc = desc_airquality, data = airquality, colnames.old = colnames(airquality), colnames.new = colnames(airquality), target.features = "Ozone")
data("airquality") dsc = "Daily air quality measurements in New York, May to September 1973. This data is taken from R." cit = "Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data Analysis. Belmont, CA: Wadsworth." desc_airquality = makeOMLDataSetDescription(name = "airquality", description = dsc, creator = "New York State Department of Conservation (ozone data) and the National Weather Service (meteorological data)", collection.date = "May 1, 1973 to September 30, 1973", language = "English", licence = "GPL-2", url = "https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html", default.target.attribute = "Ozone", citation = cit, tags = "R") airquality_oml = makeOMLDataSet(desc = desc_airquality, data = airquality, colnames.old = colnames(airquality), colnames.new = colnames(airquality), target.features = "Ozone")
Creates a description for an OMLDataSet. To see a full list of all elements, please see the documentation.
makeOMLDataSetDescription( id = 0L, name, version = "0", description, format = "ARFF", creator = NA_character_, contributor = NA_character_, collection.date = NA_character_, upload.date = as.POSIXct(Sys.time()), language = NA_character_, licence = NA_character_, url = NA_character_, default.target.attribute = NA_character_, row.id.attribute = NA_character_, ignore.attribute = NA_character_, version.label = NA_character_, citation = NA_character_, visibility = NA_character_, original.data.url = NA_character_, paper.url = NA_character_, update.comment = NA_character_, md5.checksum = NA_character_, status = NA_character_, tags = NA_character_ )
makeOMLDataSetDescription( id = 0L, name, version = "0", description, format = "ARFF", creator = NA_character_, contributor = NA_character_, collection.date = NA_character_, upload.date = as.POSIXct(Sys.time()), language = NA_character_, licence = NA_character_, url = NA_character_, default.target.attribute = NA_character_, row.id.attribute = NA_character_, ignore.attribute = NA_character_, version.label = NA_character_, citation = NA_character_, visibility = NA_character_, original.data.url = NA_character_, paper.url = NA_character_, update.comment = NA_character_, md5.checksum = NA_character_, status = NA_character_, tags = NA_character_ )
id |
[ |
name |
[ |
version |
[ |
description |
[ |
format |
[ |
creator |
[ |
contributor |
[ |
collection.date |
[ |
upload.date |
[ |
language |
[ |
licence |
[ |
url |
[ |
default.target.attribute |
[ |
row.id.attribute |
[ |
ignore.attribute |
[ |
version.label |
[ |
citation |
[ |
visibility |
[ |
original.data.url |
[ |
paper.url |
[ |
update.comment |
[ |
md5.checksum |
[ |
status |
[ |
tags |
[ |
Other data set-related functions:
OMLDataSet
,
convertMlrTaskToOMLDataSet()
,
convertOMLDataSetToMlr()
,
deleteOMLObject()
,
getOMLDataSet()
,
listOMLDataSets()
,
tagOMLObject()
,
uploadOMLDataSet()
data("airquality") dsc = "Daily air quality measurements in New York, May to September 1973. This data is taken from R." cit = "Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data Analysis. Belmont, CA: Wadsworth." desc_airquality = makeOMLDataSetDescription(name = "airquality", description = dsc, creator = "New York State Department of Conservation (ozone data) and the National Weather Service (meteorological data)", collection.date = "May 1, 1973 to September 30, 1973", language = "English", licence = "GPL-2", url = "https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html", default.target.attribute = "Ozone", citation = cit, tags = "R") airquality_oml = makeOMLDataSet(desc = desc_airquality, data = airquality, colnames.old = colnames(airquality), colnames.new = colnames(airquality), target.features = "Ozone")
data("airquality") dsc = "Daily air quality measurements in New York, May to September 1973. This data is taken from R." cit = "Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data Analysis. Belmont, CA: Wadsworth." desc_airquality = makeOMLDataSetDescription(name = "airquality", description = dsc, creator = "New York State Department of Conservation (ozone data) and the National Weather Service (meteorological data)", collection.date = "May 1, 1973 to September 30, 1973", language = "English", licence = "GPL-2", url = "https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html", default.target.attribute = "Ozone", citation = cit, tags = "R") airquality_oml = makeOMLDataSet(desc = desc_airquality, data = airquality, colnames.old = colnames(airquality), colnames.new = colnames(airquality), target.features = "Ozone")
Given a set of OML object ids, the function populates the cache directory by downloading the corresponding objects. This can avoid network access in later experiments, as you can retrieve all objects from the cache on disk. This is of particular interest in highly parallel computations on a cluster with a shared file system.
populateOMLCache( data.ids = integer(0L), task.ids = integer(0L), flow.ids = integer(0L), run.ids = integer(0L), verbosity = NULL, overwrite = FALSE )
populateOMLCache( data.ids = integer(0L), task.ids = integer(0L), flow.ids = integer(0L), run.ids = integer(0L), verbosity = NULL, overwrite = FALSE )
data.ids |
[ |
task.ids |
[ |
flow.ids |
[ |
run.ids |
[ |
verbosity |
[ |
overwrite |
[ |
[invisible(NULL)
]
Uses the ID of the run and tries to reproduce its results by downloading the flow and applying it to the respective task.
runTaskFlow( task, flow, par.list, seed = 1, predict.type = NULL, verbosity = NULL, models = TRUE )
runTaskFlow( task, flow, par.list, seed = 1, predict.type = NULL, verbosity = NULL, models = TRUE )
task |
[ |
flow |
[ |
par.list |
[ |
seed |
[ |
predict.type |
[character(1)] |
verbosity |
[ |
models |
[ |
[OMLMlrRun
], an OMLRun
.
Run task with a specified learner from mlr and produce predictions. By default, the evaluation measure contained in the task is used.
runTaskMlr( task, learner, measures = NULL, verbosity = NULL, seed = 1, scimark.vector = NULL, models = TRUE, ... )
runTaskMlr( task, learner, measures = NULL, verbosity = NULL, seed = 1, scimark.vector = NULL, models = TRUE, ... )
task |
[ |
learner |
[ |
measures |
[ |
verbosity |
[ |
seed |
[ |
scimark.vector |
[ |
models |
[ |
... |
[any] |
[list
] Named list with the following components:
The OMLRun
object.
Benchmark result returned by benchmark
.
The generated OMLFlow
object.
# \dontrun{ # library(mlr) # ## run a single flow (learner) on a single task # task = getOMLTask(57) # lrn = makeLearner("classif.rpart") # res = runTaskMlr(task, lrn) # ## the result "res" is a list, storing information on the actual "run", the # ## corresponding benchmark result "bmr" and the applied "flow" # }
# \dontrun{ # library(mlr) # ## run a single flow (learner) on a single task # task = getOMLTask(57) # lrn = makeLearner("classif.rpart") # res = runTaskMlr(task, lrn) # ## the result "res" is a list, storing information on the actual "run", the # ## corresponding benchmark result "bmr" and the applied "flow" # }
The new configuration is automatically assigned via
setOMLConfig
if all checks pass. If you don't set a certain option,
package defaults will be inserted into the file.
saveOMLConfig( server = NULL, verbosity = NULL, apikey = NULL, cachedir = NULL, arff.reader = NULL, confirm.upload = NULL, overwrite = FALSE )
saveOMLConfig( server = NULL, verbosity = NULL, apikey = NULL, cachedir = NULL, arff.reader = NULL, confirm.upload = NULL, overwrite = FALSE )
server |
[ |
verbosity |
[ |
apikey |
[ |
cachedir |
[ |
arff.reader |
[ |
confirm.upload |
[ |
overwrite |
[ |
Other config:
configuration
,
getOMLConfig()
,
loadOMLConfig()
,
setOMLConfig()
Set and overwrite configuration settings.
setOMLConfig( server = NULL, verbosity = NULL, apikey = NULL, cachedir = NULL, arff.reader = NULL, confirm.upload = NULL )
setOMLConfig( server = NULL, verbosity = NULL, apikey = NULL, cachedir = NULL, arff.reader = NULL, confirm.upload = NULL )
server |
[ |
verbosity |
[ |
apikey |
[ |
cachedir |
[ |
arff.reader |
[ |
confirm.upload |
[ |
Invisibly returns a list of configuration settings.
Other config:
configuration
,
getOMLConfig()
,
loadOMLConfig()
,
saveOMLConfig()
Add or remove a specific tag to a OpenML data, task, flow or run.
tagOMLObject( ids, object = c("data", "task", "flow", "run"), tags, verbosity = NULL ) untagOMLObject( ids, object = c("data", "task", "flow", "run"), tags, verbosity = NULL )
tagOMLObject( ids, object = c("data", "task", "flow", "run"), tags, verbosity = NULL ) untagOMLObject( ids, object = c("data", "task", "flow", "run"), tags, verbosity = NULL )
ids |
[ |
object |
[ |
tags |
[ |
verbosity |
[ |
Other data set-related functions:
OMLDataSetDescription
,
OMLDataSet
,
convertMlrTaskToOMLDataSet()
,
convertOMLDataSetToMlr()
,
deleteOMLObject()
,
getOMLDataSet()
,
listOMLDataSets()
,
uploadOMLDataSet()
Other task-related functions:
convertOMLTaskToMlr()
,
deleteOMLObject()
,
getOMLTask()
,
listOMLTaskTypes()
,
listOMLTasks()
,
makeOMLTask()
Other flow-related functions:
convertOMLFlowToMlr()
,
deleteOMLObject()
,
getOMLFlow()
,
listOMLFlows()
,
makeOMLFlowParameter()
,
makeOMLFlow()
Other run-related functions:
convertOMLMlrRunToBMR()
,
convertOMLRunToBMR()
,
deleteOMLObject()
,
getOMLRun()
,
listOMLRuns()
,
makeOMLRunParameter()
,
makeOMLRun()
,
uploadOMLRun()
Share a data set by uploading it to the OpenML server.
uploadOMLDataSet( x, tags = NULL, description = NULL, confirm.upload = NULL, verbosity = NULL )
uploadOMLDataSet( x, tags = NULL, description = NULL, confirm.upload = NULL, verbosity = NULL )
x |
[ |
tags |
[ |
description |
[ |
confirm.upload |
[ |
verbosity |
[ |
[invisible(numeric(1))
].
The ID of the data (data.id
).
This function will reset the cache of listOMLDataSets
on success.
Other uploading functions:
makeOMLStudy()
,
uploadOMLFlow()
,
uploadOMLRun()
,
uploadOMLStudy()
Other data set-related functions:
OMLDataSetDescription
,
OMLDataSet
,
convertMlrTaskToOMLDataSet()
,
convertOMLDataSetToMlr()
,
deleteOMLObject()
,
getOMLDataSet()
,
listOMLDataSets()
,
tagOMLObject()
Share a flow by uploading it to the OpenML server.
uploadOMLFlow( x, tags = NULL, verbosity = NULL, confirm.upload = NULL, sourcefile = NULL, binaryfile = NULL )
uploadOMLFlow( x, tags = NULL, verbosity = NULL, confirm.upload = NULL, sourcefile = NULL, binaryfile = NULL )
x |
|
tags |
[ |
verbosity |
[ |
confirm.upload |
[ |
sourcefile |
[ |
binaryfile |
[ |
[invisible(numeric)
].
The ID of the flow (flow.id
).
This function will reset the cache of listOMLFlows
on success.
Other uploading functions:
makeOMLStudy()
,
uploadOMLDataSet()
,
uploadOMLRun()
,
uploadOMLStudy()
Share a run of a flow on a given OpenML task by uploading it to the OpenML server.
uploadOMLRun( run, upload.bmr = FALSE, tags = NULL, confirm.upload = NULL, verbosity = NULL, ... )
uploadOMLRun( run, upload.bmr = FALSE, tags = NULL, confirm.upload = NULL, verbosity = NULL, ... )
run |
[ |
upload.bmr |
[ |
tags |
[ |
confirm.upload |
[ |
verbosity |
[ |
... |
Not used. |
[invisible(numeric(1))
].
The run ID.
This function will reset the cache of listOMLRuns
and
listOMLRunEvaluations
on success.
By default you will be asked to confirm the upload. You can deactivate the need for confirmation by setting “confirm.upload = TRUE” via setOMLConfig or set the corresponding argument each time you call the function.
Other uploading functions:
makeOMLStudy()
,
uploadOMLDataSet()
,
uploadOMLFlow()
,
uploadOMLStudy()
Other run-related functions:
convertOMLMlrRunToBMR()
,
convertOMLRunToBMR()
,
deleteOMLObject()
,
getOMLRun()
,
listOMLRuns()
,
makeOMLRunParameter()
,
makeOMLRun()
,
tagOMLObject()
A OpenML study is a collection of OpenML objects. If you create a study through the website https://www.openml.org/new/study, you can also specify an alias which can be used to access the study.
uploadOMLStudy(x, confirm.upload = NULL, verbosity = NULL)
uploadOMLStudy(x, confirm.upload = NULL, verbosity = NULL)
x |
[[ |
confirm.upload |
[ |
verbosity |
[ |
[OMLStudy
].
Other uploading functions:
makeOMLStudy()
,
uploadOMLDataSet()
,
uploadOMLFlow()
,
uploadOMLRun()
Share a task by uploading it to the OpenML server.
uploadOMLTask( task.type, data.id, target.feature, estimation.procedure, evaluation.measure = NULL, tags = NULL, description = NULL, confirm.upload = NULL, verbosity = NULL )
uploadOMLTask( task.type, data.id, target.feature, estimation.procedure, evaluation.measure = NULL, tags = NULL, description = NULL, confirm.upload = NULL, verbosity = NULL )
task.type |
[character(1)] |
data.id |
[ |
target.feature |
[character(1)] |
estimation.procedure |
[character(1)] |
evaluation.measure |
[character(1)] |
tags |
[ |
description |
[ |
confirm.upload |
[ |
verbosity |
[ |